Symplectic critical surfaces in Kähler surfaces

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Symplectic Critical Surfaces in Kähler Surfaces

Let M be a Kähler surface and Σ be a closed symplectic surface which is smoothly immersed in M . Let α be the Kähler angle of Σ in M . We first deduce the Euler-Lagrange equation of the functional L = ∫ Σ 1 cosα dμ in the class of symplectic surfaces. It is cos αH = (J(J∇ cosα)), where H is the mean curvature vector of Σ in M , J is the complex structure compatible with the Kähler form ω in M ,...

متن کامل

Critical Symplectic Connections on Surfaces

The space of symplectic connections on a symplectic manifold is a symplectic affine space. M. Cahen and S. Gutt showed that the action of the group of Hamiltonian diffeomorphisms on this space is Hamiltonian and calculated the moment map. This is analogous to, but distinct from, the action of Hamiltonian diffeomorphisms on the space of compatible almost complex structures that motivates study o...

متن کامل

Kähler Surfaces And

A complex ruled surface admits an iterated blow-up encoded by a parabolic structure with rational weights. Under a condition of parabolic stability, one can construct a Kähler metric of constant scalar curvature on the blow-up according to [18]. We present a generalization of this construction to the case of parabolically polystable ruled surfaces. Thus we can produce numerous examples of Kähle...

متن کامل

Existence of symplectic surfaces

In this paper we show that every degree 2 homology class of a 2n-dimensional symplectic manifold is represented by an immersed symplectic surface if it has positive symplectic area. Moreover, the symplectic surface can be chosen to be embedded if 2n is at least 6. We also analyze the additional conditions under which embedded symplectic representatives exist in dimension 4.

متن کامل

Flow of Symplectic Surfaces

Geometers have been interested in constructing minimal surfaces for long time. One possible way to produce such surfaces is to deform a given surface by its mean curvature vector. More precisely, the surface evolves in the gradient flow of the area functional, and such a flow is the so-called mean curvature flow. A mean curvature flow, however, develops singularity after finite time in general ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of the European Mathematical Society

سال: 2010

ISSN: 1435-9855

DOI: 10.4171/jems/207